
Let us estimate the magnitude of the pressure in a steel vessel for R/r = !00o 

The quantity p -- ~= 2~, where T is the shear strength. For steel we take T = 500 YSa, 
= 12"10 -6 l/K, E = 2"i0 s MPa. 

For R/r = i00, we obtain p(100) = 9200 MPa at To ~ 200~ from (5)~ 

Taking account of other effects (the final volume of lead in the interlayers, its ex- 
pansion during melting, the hardening of steel under pressure, etc.) radically complicates 
the problem but does not eliminate the divergence in the pressure during self-filling of the 
vessel. Taking account of the compressibility of vessel layer material (steel) diminishes 
the magnitude of the pressure for self-filling the vessel, the question of the pressure 
discrepancy at the center of the vessel remains open here. 

i. 
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ELASTIC--PLASTIC BEHAVIOR OF A MATERIAL, TAKING MICROI~HOMOGENEITIES 

INTO ACCOUNT 

O. A. Volokhovskaya and V. V. Podalkov UDC 539.374 

The construction of a theory of plasticity satisfactorily describing the singularities 
in polycrystalline material behavior is one of the urgent problems of the mechanics of a 
deformable solid. The regularities in the plastic deformation of a polycrystalline aggre- 
gate are statistical in nature since they are the result of interaction of a large number 
of randomly oriented crystals. This paper is a further development of the results obtained 
in [i-3]. 

As a rule, the influence of a "physical" microinhomogeneity (elastic and plastic 
anisotropies of the crystallites) has been examined in investigations of a similar kind 
[4, 5]. In the present paper the influence of both the "physical" and structural inhomo- 
geneities of a polycrystalline body (associated with the spread in the dimensions of its 
crystallite components) on the nature of the elastic-plastic deformation is analyzed. 

i. As is known, all real metals are polycrystalline media, i.e., are conglomerates of 
randomly oriented subcrystals (grains) that are characterized by a definite spatial arrange- 
ment of the crystalline lattice. 

The physical modei of a polycrystal described in [i, 2] is taken for the subsequent 
investigations. The macroscopic stress--strain state of the medium is assumed homogeneous, 
the mechanism of plastic deformation is considered to be translational slip in the crys- 
tallites forming the aggregate. 

It is known [5, 6] that metals can experience considerable deformation without the for- 
mation of cracks so that crystals in mutual contact in an undeformed material retain this 
contact in the whole deformation stage. This means that the equilibrium equations and the 
strain compatibility conditions are satisfied at each point of the polycrystalline material: 

Vj~j = 0; (i.i) 

~jzhm~VmV~elm = 0. (1.2) 

where 6ilm is the unit Levi--Civita pseudotensor~ and Vj = ~/~xj. Here ~HZhm~ = 6i~m~7~7~, 

The relationships 
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are satisfied on the polycrystalline surface, and the stress and strain in the grains are 
related by Hooke's law 

eu  = S i j ~ t ~ k t - b e i j ,  ( 1 . 4 )  

where  e i j  i s  t he  p l a s t i c  d e f o r m a t i o n  f i e l d s ,  and S i j k l  i s  t h e  g r a i n  e l a s t i c  p l i a b i l i t y  t e n -  
s o r  dependent on the crystallite orientation and the kind of crystal lattice of the ma- 
terial. 

Let us determine the relation between the stress and incompatible strain fields in the 
polycrystai by using the solution of the fundamental problem of elasticity theory (I.i)- 
(1.3) in stresses. Substituting (1.4) into (1.2), we obtain 

B~#,(V)(%~ _ < ~ > )  = _/~ j ;  ( i .  5) 

Bi#s(V) = ~ i j z h ~  Clhr,VmV~; (1.6) 

fu = ~U~m~V~V,• (1 .7)  
• = Dtars%s "+" et~ - -  <eth> + C~rs<ars>, ( 1 . 8 )  

where Cijlk is the material elastic pliability tensor assumed known, Dlkrs = Slkrs -- Clkrs 
is the component of the tensor Slkrs that depends on grain orientation, and ut~ is the in- 
compatible strain field. 

It has been shown in [7] that the field fij cannot be arbitrary and should satisfy the 
Krener gauge condition 

Vff~i = 0. (i. 9) 

It can be shown by direct substitution that this condition is satisfied in this case. 

Determining the Green's tensor R~rs(r) for the differential operator Bijlk(7) from the 
equation 

B~i~(V)R~r~(r ) = (t/2)(6~r6~ + 6~fl~r)6(r), 
R~s~s(r ) -+0  ~r r -->-~o, 

we find the relation between the stress in the polycrystalline grains and the incompatible 

strain field from (1.5) 

The integral 

Ju = ,f ~t~,~nR~jv~, (r - -  r') W• (r') hindS, 
Sr162 

which  e q u a l s  z e ro  has  been  d i s c a r d e d  i n  ( 1 . 1 0 ) ,  and t h e  f a c t  i s  t a k e n  i n t o  a c c o u n t  t h a t  t he  
f u n c t i o n  V m R U p q ( r -  r') i s  r e g u l a r  i n  the  domain V, where  V i s  t h e  spec imen  volume.  

For  a m a c r o i s o t r o p i c  medium the  o p e r a t o r  B i j l k ( V )  has  t h e  form 

- -  2s0v 6n61h, B~ilh(V) = (Po -k 2So)6u~(V~6iy ViVi) - -  ~ 

and t h e  G r e e n ' s  t e n s o r  R i j pq  i s  d e f i n e d  by t h e  r e l a t i o n s h i p  

~o g~jpq (p) = ~ [lUpqV19 -- ~6pq (6uVlp -- ViVjP)]. (i. ll) 

Here 

1 1 1 
Ii~pq = -~ -  (6~v6~q + 6~g6jv); so = ~--~%; ~ = ~ o  = lOgo; p = [r  - -  r' l; 

Io, ~o, ~o are the Lam~ parameters and Poisson ratio of a continuous medium with an elastic 

pliability field Cijkl. 

For Rijpq defined by (i.ii), the relationship (i.i0) satisfies the equilibrium equa- 
tions (l.l)-and the boundary conditions (1.3), and therefore, is a solution of the funa- 
mental problem of elasticity theory for a polycrystal. 
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The relationship (I.i0) is exact in the sense that it has been obtained without any 
assumptions about the form of the incompatibility field and is valid for all the poly- 

crystal grains. 

2. Let us assume that all the polycrystal grains are simply connected, contain cen- 
ters of gravity inside, and the crystallite shape is independent of the orientation of the 
crystallographic axes. Then a passage from the physical model of a polycrystal with a 
spatial crystallite arrangement to its statistical model with average grains being dis- 
tinguished only by orientations and size [i, 2] is possible. The incompatibility fields 
averaged with respect to ~ (i.e., the set of grains, orientations, and dimensions located 
in an infinitesimal neighborhood of a point corresponding to the orientation and dimension 
of a certain fixed gain in the space of orientations and dimensions) turn out to be iso- 
tropic in the statistical model of the medium. Hence, under the assumption of isotropy of 
the macroscopic elastic properties of the polycrystal, the integral in the right side of 
(i.i0) can be evaluated, and the equation mentioned becomes 

where 

z u  - -  < z ~ D  - L ~ •  l ) ,  (2 .1 )  

(2. 2) L~jl, t : :  - -  - ~  [(l ~- {go) I~1{~ - -  (l - -  12go) J{~t{z], 

• l) = • l), ]u~z = 6~jSkz, 

(0(% q~, 0) i s  t h e  g r a i n  o r i e n t a t i o n  i n  t h e  s p a c e  of  E u l e r  a n g l e s  (% 9, O), and l i s  t h e  c h a r -  
a c t e r i s t i c  d i m e n s i o n  of  t h e  g r a i n .  

From t h e  r e l a t i o n s  ( 2 . 1 )  and ( 1 . 8 )  we o b t a i n  an e q u a t i o n  r e l a t i n g  t h e  s t r e s s  and p l a s -  
t i c  d e f o r m a t i o n  f i e l d s  i n  t h e  a v e r a g e  g r a i n  to  t h e  m a c r o s c o p i c  s t r e s s - s t r a i n  s t a t e  o f  t h e  
p o l y c r y s t a l  : 

Q u h l ~ t  - -  Luh~e~z : ~u; ( 2 . 3 )  

Qu~l = Iuht  - -  LursDrs~Z; ( 2 . 4 )  

~U = (Iukt  + LursCrst~t)<zk~> - -  LUkZ<Sk~>, ( 2 . 5 )  

where  $ i j  i s  t h e  p a r a m e t r i c  t e n s o r  of  t h e  m a c r o s c o p i c  s t r e s s - - s t r a i n  s t a t e .  

We t u r n  to  t h e  s t r e n g t h e n i n g  law [2] 

% = T o ~- a=~w~) (2.6) 

to obtain the plastic shear equation in the effective polycrystal grain, where To is the 
critical tangential stress in the undeformed crystal, ~ao is the decisive tangential stress 

j. 
in the slip system ~; w~= IdOl is the integrated shear in the system a; nab is the element 

of the strengthening matrix. Experiments [6] show that the critical tangential stress Yo 
depends on the magnitude of the grain. The form of this dependence can be determined by 
using the known Hall--Patch equation for the macroscopic elastic limit of the polycrystal 

"% = ,% ~ k , l  -n,  

where 7. is the grain dimension, T*o is the friction stress equal to the elastic limit of a 
polycrystal consisting of a single monocrystal, and k, is a constant of the material that 
is associated with strain propagation through the grain boundary. The exponent n for BCC 
metals is usually 0.5, and for FCC and HCP metals can take the values 0.5 and 1.0. 

The elastic limit in shear for a polyerystalline material does not agree with the 
elastic limit of a grain taken separately because of the elastic anisotropy of the com- 
ponents of the crystailite aggregates. The ratio of the macroscopic and local elastic 
limits 13 = T,/To depends on the kind of crystalline lattice and the elastic constants of the 
crystal [i, 8]. 

The reasoning presented permits determination of the dependence of To on the grain 
dimens ion 

(2.7) ~0 (z) : %- (~0 + k , r ~ ) .  
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Going over from finite quantities to their increments in (2.6) and the substituing of 
~ from (2.3) with the rule for transformation of tensors during passage from crystallo- 
graphic axes to axes coupled to the slip systems of the crystal [2] taken into account, we 
obtain the equation of plastic shears in an effective grain with dimension ~ and orientation 
to: 

m a ~  = w ~ .  (2 .8 )  

Here 
a 

m ~  = t~jW~3hztht + To (l) a(~)(~) sign T(~) sign ~(~); 

Wijkz 2 (Li3~sDrspq -- --1 . r = I~3pq) Lpqtk, wij = t~l (ikti3 - -  LktpqDpqu)-l; 

Ta.. i s  t h e  m a t r i x  o f  c o o r d i n a t e  t r a n s f o r m a t i o n  f rom the  c r y s t a l l o g r a p h i c  axes  to  axes  13 
coup l ed  to the  s l i p  sy s t em w i t h  number a i n  t h e  e f f e c t i v e  g r a i n ,  and ~a i s  t h e  p l a s t i c  s h e a r  
in  t h e  sys t em.  There  i s  no summation o v e r  t he  s u b s c r i p t s  i n  p a r e n t h e s e s .  The o p e r a t o r  ( ' )  
means t h e  p a s s a g e  f rom f i n i t e  q u a n t i t i e s  to  t h e  i n f i n i t e s i m a l  i n c r e m e n t s .  

When examin ing  u n s t r e n g t h e n e d  m a t e r i a l  (aa~ -- 0) t h e  i m p r e s s i o n  can o c c u r  t h a t  t h e  
p l a s t i c  s h e a r s  d e t e r m i n e d  f rom t h e  sy s t em (2 .8 )  a r e  i n d e p e n d e n t  o f  t h e  d imens ion  of  t he  
effective grain. However, this is not actually so since the mentioned system of equations 
should be solved under the condition T~ = Ta(1). 

Determining the plastic shears from (2.8), we find the dependence between aij and the 
parametric tensor of the macroscopic stress strain state 

~i(0), l) = Mi/rs(~ , /)~rs, (2 .9 )  

where  

M~jrs(~,l)---- -1 ~ -1 Qij,~n [2Lmn, qtpqm~ (co, l' t ~ ~-I ImnrJ ] hzwars + (2 .10)  

from (1.4) and (2.3) with the known relationship between the plastic shears and deformations 
taken into account. 

Summation in (2.10) is over those values of ~ and 8 that correspond to active slip 
systems [2]. 

For a microhomogeneous material (Dijpq = 0) under the condition that To is independent 
of the grain dimension, (2.9) agrees with the known Krener--Budiansky--Wu equation [5]. 

The relation between the macroscopic stresses and strains in a po!ycrystalline material 
(the plasticity law) is determined by averaging (2.9) over the domain of grain dimension 
distribution and the set of orientations with given probability density p(~, l). 

Taking account of (2.5), we obtain 

Zi]rs <Mijkl((O, l)>w,l([klmn -1 = __ LhlpqCpqmn ) <Mrn,~u,}L~,r~, 

where  X i j r s  i s  t he  t e n s o r  of  i n s t a n t a n e o u s  p l a s t i c  modu l i  o f  a p o l y c r y s t a l  a t  t h i s  s t a g e  o f  
t h e  h i s t o r y  o f  s t r a i n .  The form of  the  t e n s o r  X i j r s  depends  on t he  t r a j e c t o r y  o f  a p o i n t  
i n  s t r a i n  (o r  s t r e s s )  s p a c e .  

3�9 Le t  us c o n s i d e r  a c o m p u t a t i o n  o f  the  s t r a i n  c u r v e s  f o r  aluminum of  99.99% p u r i t y � 9  
Le t  t he  g r a i n  d i s t r i b u t i o n  w i t h  r e s p e c t  to  the  o r i e n t a t i o n s  and d i m e n s i o n s  i n  t he  a g g r e g a t e  
be g i v e n  by t he  p r o b a b i l i t y  d e n s i t y  

p(o), l) = pl((o)p~(l), p~(co) = l/8n ~ (3 .1 )  

(t-a>) ~ 
c 

where ~, = 0.1415 mm; ~a = 0.353 mm; </>----0.2473 ram; and e is a normalizing constant de- 
pendent on d. 

, 
To determine the constants ro and k, in (2.8), the curve i (Fig. i) corresponding to the ex- 

perimental dependence of the elastic limit of aluminum on the mean grain dimension [6] is 
used. Curves 2 and 3 correspond to the approximation of experimental data to the Hall--Patch 
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dependence for the exponents n = 0.5 and io0, respectively. It follows from the graph that 
the Hall--Patch curve with exponent n = 0.5 approximates the experimental curve better. This 
also agrees with the experimental data [6]. Taking the above into account, we found that 
�9 o = 0.066 kg/mm 2 k, = 0.122 kg/mm 3/2 

In order to simplify the calculations, the strain curves were analyzed for the simple 
tension case. The results of the computations for the model proposed for the po~ycrystalline 
material with ideally plastic grains are presented in Fig. 2 in the coordinates s = g/co, 
o = c/oo, where ao and eo are the elastic limit and the corresponding elastic strain of a 
poiycrystal consisting of grains of dimension 12. 

Curve 1 characterizes the behavior of crystallites whose dimension corresponds to the 
right end of the distribution interval (coarse grains), and 6 to the left end (fine grains). 
The dependence 2 characterizes the behavior of grains of the most probable dimension <{> 
Curves 3-5 are strain patterns of a polycrystalline aggregate in which the crystallite di- 
mension distribution is described by the probability density (3.1) with different values 
of the rms deviation /d= 0~ /d= 0.05, /d= 0.i, respectively. 
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The influence of is,tropic strengthening (according to Taylor) on the strain diagram 
of a polycrystal is exhibited in Fig. 3, where curves 1-4 correspond to curves i, 2, 5, 6 
in Fig. 2. The dashed lines correspond to the value of the quantity b/G = 0.02 (b is the 
is,tropic strengthening factor, and G is the shear modulus), and the dash--dot line to b/G = 
0.I0. 

It follows from the dependences presented that the mean grain dimension exerts the 
fundamental influence on the behavior of a polycrystalline aggregate consisting of crys- 
tallites of different dimensions. The dependence of the strain diagram on the nature of 
the grain dimension distribution turns out to be negligible. 

i .  

2. 

3. 

. 

5. 

6. 
7. 
8. 
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PARAMETRIC RESONANCE IN A STRATIFIED FLUID 

V. A. Vladimirov UDC 532.5.51 

Parametric resonance is one of the widespread types of instability of mechanical sys- 
tems. A somewhat broader class of phenomena is called parametrically excited oscillations. 
The mathematical definition of this class of oscillations is ordinarily given [i] for systems 
whose equations of motion reduce to ordinary differential equations in the time. Parametric 
oscillations are related to the periodic dependence of the coefficients (parameters) of 
these equations on the time. Such oscillations are distinct from forced oscillations for 
which the explicit time dependence is contained only additively, in the form of periodic 
forces, in the equations. The Mathieu equation and its generalization are a standard ex- 
ample of parametric oscillation equations. The experimental work of Faraday [2], in which 
the oscillations of a free fluid surface in a vessel were studied, was the first investiga- 
tion of parametric oscillations. However, mainly applications to solid and elastic bodies 
[i, 3, 4] were developed later. The exception is the problem of the oscillations of a free 
fluid surface in a vertically oscillating vessel. It has been shown [5-7] that in a linear 
approximation, the displacement of a free surface reduces to a Mathieu equation, and reso- 
nance frequencies therefore exist for which the surface turns out to be unstable. Taking 
account of the viscosity in this problem is presented in [8]. Only in the past decade have 
investigations been started on the parametric instabilities of more complicated flows. 
Parametric resonance in convection problems was studied in [9, i0]. The stability of Rossby 
waves was investigated in [11-14]. The papers [15, 16] are devoted to the instability of 
internal waves in a stratified fluid. A number of considerations on the possibility of the 
growth of fine-scale perturbations in the internal wave background is presented in [15]. 
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